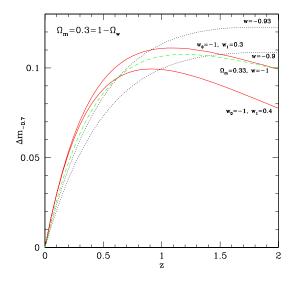

Redshift Range Strategy for SNAP

Eric Linder Berkeley Lab

What drives the redshift for determining dark energy?

- Physics of Density Evolution
- Physics of Expansion Acceleration
- Breaking Degeneracy, e.g. Ω_m , Ω_w combination
- Discriminating between Dark Energy Models

Discrimination between models is much tougher and more important.


Supernovae and other methods today limit

$$w < -0.6$$
 (95% c.l.)

What would a measurement $w = -0.8 \pm 0.1 \ (1\sigma)$ tell us?

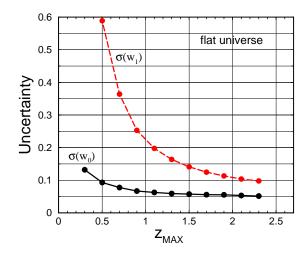
- Nothing new.
- Confuses $w_{\text{meas}} = -0.8$ with w = -1.
- Confuses $w_{\text{meas}} = -1.2$ with w = -1.

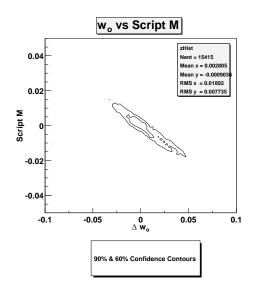
Discrimination requires $z > z_{\rm eq}$, $z_{\rm ac}$.

Need to see time variation in w

 \Rightarrow definitive difference from cosmological constant.

- $w(z) = w_0 + w_1 z$ vs. $\langle w \rangle$ vs. tomography
- $w \neq -1$ not necessarily true.
- Not able to see spatial variation in dark energy.


Confusion plot indicates


- Need complementary info: Ω_m , Ω_T , \mathcal{M}
- Need higher redshift:

$$\delta w_0 < 0.1$$
 ; $\delta w_1 < 0.2$; $\delta m < 0.02$ $\Rightarrow z > 1.5$

Best way to visualize survey depth results?

- Table of δw vs. z_{max} ?
- Plot of δw vs. $z_{\rm max}$?
- Contours of $\delta w \Omega_m$ or $\delta w_0 \delta w_1$ shaded by z_{max} ?

Systematic Errors:

- Grey dust
- Weak lensing
- Supernova physics
- Complementary methods' systematics

Current survey depth results are separate for statistical errors and systematic errors (very rough).

- Current systematic $\delta m \sim z$
- Looking over 70% age of universe
- Need realistic model

Need to incorporate statistical and systematic errors together for rigorous assessment of survey redshift range.